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2 Example: Survival times of cancer patients

e Cameron and Pauling [1]; Hand et al. [2] p. 255

e Patients with advanced cancer of the stomach, bronchus, colon, ovary, or breast
were treated (in addition to standard treatment) with ascorbate.

e The outcome of interest is the survival time (days)

e Research question(s):

What is the prognosis for a patient with specific type of cancer ?

Do survival times differ with organ affected ?
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e Dataset ‘Cancer’:

Stomach Bronchus Colon Ovary Breast
124 81 248 1234 1235
42 461 377 89 24
25 20 189 201 1581
45 450 1843 356 1166
412 246 180 2970 40
51 166 537 456 727
1112 63 519 3808
46 64 455 791
103 155 406 1804
876 859 365 3460
146 151 942 719
340 166 776
396 37 372

223 163

138 101

72 20

245 283

Average (days) Median (days)

Stomach:

Bronchus:

Colon:
Ovary:

Breast:

286
211.6
457 .4
384.3

1395.9

124
155
372
406
1166
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Stomach cancer

e Note the severe differences between averages and medians, due to the skewness of
the distribution:

6666666

urvival time

May 26, 2009

urvival time

appropriate transformation (e.g., logarithmic), or based on non-parametric tests
in Oncology Trials, Leuven

(e.g., Wilcoxon test).

e Comparisons between groups is therefore based on parametric tests after
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3 The survival curve

e Often it is of interest to make a prognosis for specific patients, i.e., it is of interest
to estimate the probability of ‘surviving’ a specific amount of time

e In other contexts, the response is not ‘survival’, but still a ‘time to event’:
> Progression free ‘survival’
> How long will a bulb ‘survive’
> Time untill first tooth is affected with caries
> Time a rat needs to find the exit of a maze

> ...

e Terminology: Survival and Failure
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e In the cancer example, it may be of interest to estimate how likely it is that a
patient with colon cancer, treated (in addition to standard treatment) with
ascorbate, will survive 1 year, 2 years, ...

e Interest is then in the survival function / curve:

S(t) = P(Outcome > t)
“The probability of surviving time point ¢”

e Properties of S(%):
> S(0) = 1: There is absolute certainty to ‘survive’ t = 0
> S(4+00) = 0: There is absolute certainty to ‘fail’ eventually

> S(t) is a decreasing function

Biostatistics in Oncology Trials, Leuven May 26, 2009



e Examples of survival curves:

Survival probability S(t)
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4 Estimation of survival curve

e As S(t) can be interpreted as a proportion, it can easily be estimated by the
observed proportion of subjects surviving time point ¢:

S(t) = P(Outcome > t) —— S(t) = # subjects surviving

N

e As an example, we estimate the survival curve for ovary cancer patients

e The following 6 event times were recorded:

1234 89 201 356 2970 456
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e Calculations:

Time (?) # Surving t S(t)

0 6 6/6 = 1.00
30 6 6/6 = 1.00
89 5 5/6 = 0.83
100 5 5/6 = 0.83
201 4 416 = 0.67
356 3 3/6 = 0.50
400 3 3/6 = 0.50
556 2 2/6 = 0.33
1234 1 1/6 = 0.17
2970 0 0/6 = 0.00
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e Graphically:
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5 The problem of censoring

-

»
-
-
[
¥

Event time cannot always be measured |

\

Censored observations

Various types of censoring:

> Right
> Left

> Interval

> Mixture of the above
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No censoring

mmmm' Before event  =mmmm: After event @ : True event time O3 Observations
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Right censoring due to study end

mmmm' Before event  =mmmm: After event @ : True event time O3 Observations

S Subject 1
Subject 2
s Subject 3
i Subject 4
Subject 5
Subject 6
. Subject 7
Subject 8

¢ Time/Age
End of study
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Right censoring due to dropout

mmmm' Before event  =mmmm: After event @ : True event time O3 Observations

{Subject 2
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Left censoring due to late study onset

mmmm' Before event  =mmmm: After event @ : True event time O3 Observations

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8

Time/Age

Begin of study
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Interval censoring due to discrete observation times

mmmm' Before event  =mmmm: After event @ : True event time O3 Observations

OBSERVATION TIMES
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e Our focus will be on right censoring, i.e., either the true event time or a lower
bound of it is observed

e Standard statistical tools for the analysis of censored observations assume random
censoring:

Event time and censoring time are independent

e Counter examples:

> Patients entering the study later have a better prognosis due to increased
experience of surgeon
—> Negative association between censoring and event time

> Patients leaving the study because they get worse
—> Positive association between censoring and event time
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6 Example: Myelomatosis

e Peto et al. [3]; Allison [4] p.26

e Data on 25 patients diagnosed with myelomatosis (Kahler's disease), multiple
malign tumours in the bone marrow

e Patients randomly assigned to two drug treatments
e Event time is the time from moment of randomization to death
e Some event times are censored due to study termination

e Patients with normal and patients with impaired renal functioning at moment of
randomization
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e Data:

Treat Duration Status Renal | Treat Duration Status Renal
1 8 1 1 2 180 1 0
1 852 0 0 2 632 1 0
1 52 1 1 2 2240 0 0
1 220 1 0 2 195 1 0
1 63 1 1 2 76 1 0
1 8 1 0 2 70 1 0
1 1976 0 0 2 13 1 1
1 1296 0 0 2 1990 0 0
1 1460 0 0 2 18 1 1
1 63 1 1 2 700 1 0
1 1328 0 0 2 210 1 0
1 365 0 0 2 1296 1 0

2 23 1 1

Status:

> 0: Censored

> 1: Death
Renal:
> 0: Normal

> 1: Impaired

e Interest is in estimating and comparing the survival curves for patients with
different treatments and for patients with different renal functioning at baseline
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7 Kaplan-Meier estimate of survival curve

e Suppose interest is in estimating the survival curve for patients with treatment 1

e Observed data:

Duration: 8 852 52 220 63 8 1976 1296 1460 63 1328 365
Status: 1 0 1 1 11 0 0 0 1 0 0

e Simple ‘naive’ solutions:
> Ignoring the censored observations: Qver-optimistic

> Treating censored observations as event times: Over-pessimistic
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e The so-called Kaplan-Meier estimate S(t) correctly accounts for the censoring:

e Observed ¢ Censored
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8 Comparison of survival curves

e Often, interest is in the comparison of survival curves of different groups

e For the Myelomatosis data, interest may be to compare survival between the two
treatment goups

e Also of interest is the comparison of survival for patients with impaired renal
functioning with survival for patients with normal renal functioning.

e \We will focuss on the comparison of two groups, but extensions are available for
the comparison of multiple groups

e For each group separately, the Kaplan-Meier estimate for the survival curve can be
calculated.
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e Kaplan-Meier estimates for both treatment groups:

e Observed ¢ Censored
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e Kaplan-Meier estimates for patients with normal and impaired renal functioning,

respectively:

e Observed ¢ Censored
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e Due to the censoring, classical tests such as t-test and Wilcoxon test cannot be
used for the comparison of the survival times

e Various tests have been designed for the comparison of survival curves, when
censoring Is present

e The most popular ones are:
> Logrank test

> Wilcoxon (Gehan) test
e The Logrank test has more power than Wilcoxon for detecting late differences

e The Logrank test has less power than Wilcoxon for detecting early differences
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e [est results:

Survival probability S(t)
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9 Power issues

The power of the tests depends on the number of
events, not on the number of subjects

U

Long-lasting huge studies needed to show small
improvements versus successful therapies
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10 Examples from biomedical literature

e Shatari et al. [5]:
> Methods, p.4309:

The rate and duration of the recurrence requiring
re-operation for obstructive symptoms were analysed by
the Kaplan-Meier plot and log-rank test. y° test and
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> Figure 1, p.440:
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Figure | Kaplan-Meier nonrecurrent curves for short strictu-
replasty group ( ) and long strictureplasty group (- - - - - ).
There is no significant difference between them (log rank test:

P =0.702).
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e Blanchon et al. [6]:
> Statistical Methods, p.831:

Statistical analyses

Mortality was used as the dichotomous outcome variable.
Kaplan-Meier survival estimates were plotted over the
follow-up period according to risk factors and were
compared by the log-rank test. For multivariate analysis, a
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> Figure 2, p.834:

Log-rank p<0-0001
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Figure 2: Kaplan-Meier survival curves from mortality in patients with NSCLC according to point score

categories in development cohort
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